

A Programmer’s Guide to the Bounding Overwatch

Behavior Software

by MaryAnne Fields

ARL-MR-589 June 2004

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-MR-589 June 2004

A Programmer’s Guide to the Bounding Overwatch
Behavior Software

MaryAnne Fields

Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

June 2004
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

November 2003–January 2004
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A Programmer’s Guide to the Bounding Overwatch Behavior Software

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

AH03
5e. TASK NUMBER

6. AUTHOR(S)

MaryAnne Fields

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-WM-BF
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-MR-589

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report is a programmer’s guide to the software developed for the BoundingMovement behavior implemented on the
ATRV-Jr platforms. The BoundingMovement algorithm is documented, and a detailed example is provided for other
researchers trying to develop computer programs for the iRobot platforms. An overview of the behavior algorithm, details on
the computer code developed to implement the algorithm, and a discussion of future research are also provided.

15. SUBJECT TERMS

robot, behavior algorithms, bounding overwatch

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
MaryAnne Fields

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

32

19b. TELEPHONE NUMBER (Include area code)
410-278-6675

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures v

List of Tables v

Acknowledgments vi

1. Introduction 1

2. Servers 4
2.1 Information Server ..4

2.2 Map Server ..4

3. BoundingMovement Functions 5
3.1 Image Processing...5

3.1.1 GetImage ...5
3.1.2 ClassifyPixel..6
3.1.3 IsPixelYellow ..6
3.1.4 FindWayPoint..7
3.1.5 GetWayPointBearing ..8
3.1.6 FindNearestWall..8
3.1.7 KeepEyesOnWaypoint ..9
3.1.8 LookForMovement..10
3.1.9 FollowMovement ..10

3.2 Sonar Processing ...11
3.2.1 CheckSonar ...11
3.2.2 Process_Sonar ...12

3.3 Movement..13
3.3.1 OrientVehicle ..13
3.3.2 RotateIntoWall ..13
3.3.3 MoveToWaypoint ...14
3.3.4 MoveToWall ...14
3.3.5 MoveIntoOpen...15
3.3.6 BoundForward...15

 iv

3.4 Communication ...16
3.4.1 PublishMessage ...16
3.4.2 GetMessage ...16
3.4.3 ParseMessage ..17

3.5 Miscellaneous..18
3.5.1 StartServers ...18
3.5.2 PrintImage ...18
3.5.3 PrintYellowImage ...19

4. Conclusions 20

Appendix. Defined Constants for the BoundingMovement Code 21

Distribution List 23

 v

List of Figures

Figure 1. The state diagram for the BoundingMovement behavior..2
Figure 2. The process flow diagram for the Move state. ..3
Figure 3. The process flow diagram for the Watch state. ...3

List of Tables

Table A-1. List of the defined constants used in the BoundingMovement software....................22

 vi

Acknowledgments

The author would like to acknowledge MyVan H. Baranoski for writing the ParseMessage
function and Richard J. Pearson for writing the ProcessSonar function.

 1

1. Introduction

One of the goals of the U.S. Army Ground Robotics Research Program is to develop individual
and group behaviors that allow the robot to contribute to battlefield missions such as
reconnaissance. As a part of this research program at the Weapons Technology Analysis Branch,
we have developed a behavior to demonstrate aspects of a bounding overwatch maneuver. The
behavior is a cooperative mission, with one robot acting as a stationary observer, while the other
robot bounds to its next destination. The robots alternate roles until the mission is complete.
The behavior was developed in simulation using One Semi-Automated Forces (OneSAF). This
allowed us to develop an algorithm that was not tied to a specific robotic hardware configuration.
Two ATRV-Jr* robots from iRobot, Inc. were selected to demonstrate the behavior as surrogate
robotic platforms for the experimental unmanned vehicle (XUV). The robots are four-wheeled,
skid-steered platforms that can be used indoors and outdoors. The ATRV-Jr’s sensors include
visible spectrum cameras, ultrasonic range sensor array, GPS, an inertial measurement unit, a
compass, and a tilt sensor. All sensor data analysis and mobility control is performed by a single
on-board processor.

We have implemented some simplifications in our demonstration scenario and environment that
enable us to experiment with the behavior indoors using laboratory robots with limited sensor
capabilities and processing power. First, due to the inability to navigate GPS waypoints indoors,
the endpoint is a visual beacon that the robots can use to orient themselves as they perform the
behavior. Secondly, yellow walls, easily identified by the robots, simulate concealed locations
along the way to the endpoint. The planned addition of a single line laser radar (LADAR) will
make the indoor navigation more robust. These simplifications allow us to focus on the
algorithm and not be distracted by the integration of additional sensors or processors.

This document is a programmer’s guide to the software developed for the BoundingMovement
behavior implemented on the ATRV-Jr platforms. This guide documents the
BoundingMovement algorithm and provides a detailed example for other researchers trying to
develop computer programs for the iRobot platforms.

The remainder of this section is an overview of the behavior algorithm. We describe the
behavior in terms of a state diagram and a process flow diagram. Sections 2 and 3 provide
details on the computer code developed to implement the algorithm. The last section is a
discussion of planned experiments for the bounding overwatch maneuver.

Figure 1 shows a state diagram of the bounding movement behavior. There are four states:
START, BOUND FORWARD, WATCH, and END. These are shown as ovals in the diagrams.

* ATRV-Jr is a trademark of iRobot, Inc.

 2

Figure 1. The state diagram for the BoundingMovement behavior.

The dashed boxes give the condition for each transition. The START state transitions to either
the BOUND FORWARD or WATCH state, depending on the position of the robot with respect
to the endpoint. Transitions from the BOUND FORWARD to the WATCH state occur when the
robot reaches a wall. Transitions from the BOUND FORWARD to the END state occur when
the robot reaches the endpoint. In this behavior algorithm, a robot does not transition from the
WATCH state to the BOUND FORWARD state on its own; it must receive a message from its
companion indicating that it is time to switch states.

Figure 2 shows an overview process flow diagram for the BOUND FORWARD state. In the
diagram, activities executed serially like “MoveIntoOpen” and “FindNearestWall” are connected
with straight lines. Activities executed in parallel, such as “MoveToWall” and “GetMessage”
are connected by diamonds. In the setup phase, the robot moves into the open to prepare for its
next move. It determines its next destination using its cameras to find the nearest wall if one
exists. The solid lines show the algorithm that the robot uses to move to a wall. The dashed
lines show the algorithm used to travel to the endpoint. Once the robot begins moving, it uses its
cameras to provide steering information for driving system and its sonar array to determine
distance to nearby obstacles. During this phase, the robot also monitors its message queue for a
danger signal published by its companion. A danger signal causes the robot to speed up so that it
reaches a place of cover quickly. In the wrap-up phase, the robot assumes a watching position
and signals its companion that it is time to switch states.

 3

Figure 2. The process flow diagram for the Move state.

Figure 3 shows a flowchart for the WATCH state. Just as in figure 2, lines link activities that are
executed serially, while diamonds link activities that are executed in parallel. In this state, the
robot’s camera mount is oriented toward the endpoint and the images are analyzed for evidence
of moving objects. If the robot detects movement, it sends a danger signal to its companion.
The robot continues to watch until it receives a move signal from its companion.

Figure 3. The process flow diagram for the Watch state.

 4

2. Servers

A server is an independent process that provides information and control for systems available to
the robots. The Mobility* software package provides servers that interface to sensors and
actuator systems such as the drive motors or the pan-tilt unit. In this section, we describe two
servers that provide useful information for the robots. The first server handles communication
between the two robots. The second server maintains a shared obstacle map.

2.1 Information Server

The information server allows the robots to communicate with each other. The server is an
object derived from the ActiveSystemComponent class of the Mobility software library. The
BoundingMovement program accesses the server by linking variables within the server object to
local variables. For this software project, there are two variables of interest: R4-Message
maintains messages from the R4 robot and R5-Message maintains messages from the R5 robot.
Each of these objects consist of an 80-character string variable and timestamp that provides the
time of message generation, in nanoseconds, and a message number. Messages are placed on the
server, or published, using the new_sample method for the information server class. This makes
the messages available to programs running on the robot or other computers within the local area
network. Messages are read by programs using update_sample method for the information
server class. Both of these methods were inherited from the ActiveSystemComponent class and
are used frequently to pass information to and from many servers included in the Mobility
software package.

This server implements a broadcast strategy. A robot only publishes messages on its specific
message line. Other robots must monitor that message line for new information. Note that this
strategy does not guarantee message delivery.

The server does not control message content. The applications, such as the BoundingMovement
behavior, determine the message set. The message set for this behavior is described in
section 3.4.2.

2.2 Map Server

The map server maintains a shared map for up to five robots. It collects two types of
information, position information and obstacle information. The server is an object derived from
the ActiveSystemComponent class of the Mobility software library. The server constructs the
obstacle map from three types of information; position data, sonar data, and laser data. The
position data gives the location of the robot on the map. Sensors such as the odometry sensor or
the Global Positioning System (GPS) sensor supply position information. The sonar data and the

* Mobility is a trademark of iRobot, Inc.

 5

laser data give the location of obstacles relative to the robot. The map server uses both sources
of information to construct an obstacle map showing the location of walls and other obstructions.

In the BoundingMovement behavior, the map server is used as a diagnostic tool that allows the
researcher to visualize information from several sensors at one time. As we continue to develop
the map server, we intend to include a priori knowledge and use the map as an information
source for robotic planning algorithms.

3. BoundingMovement Functions

This section describes the C++ functions developed for the BoundingMovement behavior. The
functions are grouped by category: Image processing, Sonar processing, Movement,
Communication, and Miscellaneous. Within each category, functions are described in order of
complexity with the least complex functions described first. Each function description contains
five sections: Function Prototype, Description, Input Variables, Output Variables, and Return
Value. The Function Prototype provides the call syntax that gives the argument list and the
return type. The arguments are described in the Input Variable and Output Variable section. The
Description section provides a short description of each function. Most of the functions return
status information; defined constants with descriptive names are more useful as status
information than the actual integer value of the constant. This section provides the defined
constant names and their interpretation. The appendix provides a table of defined constants and
their numerical values.

3.1 Image Processing

3.1.1 GetImage

Function Prototype:

• int GetImage(int CameraNumber, double period).

Description:

• GetImage – updates the stored image array from the camera specified by the
CameraNumber variable. The period variable determines how often new images are
retrieved. This allows calling routines flexibility in using images; the GetImage routine
can be called from inside a high-frequency loop, such as a driving loop, without requiring
new images to be generated at the same frequency.

Input Variables:

• CameraNumber – integer variable specifying the desired camera.

 6

• period – double-length floating point number that sets the image retrieval period in
seconds.

Possible Return Values:

• YES – a new image has been generated.

• NO – no new image is available.

3.1.2 ClassifyPixel

Function Prototype:

• int ClassifyPixel(int red, int green, and int blue).

Description:

• ClassifyPixel determines the color of a pixel based on the RGB color scale. Possible return
values are red, blue, or neutral.

Input Variables:

• red, green, and blue integer variables describing the RGB color of the pixel.

Possible Return Values:

• RED – the pixel is red.

• BLUE – the pixel is blue.

• NEUTRAL – the pixel is not red or blue.

3.1.3 IsPixelYellow

Function Prototype:

• int IsPixelYellow(int red, int green, and int blue).

Description:

• IsPixelYellow determines the color of the pixel using the RGB color scale. The routine
returns the integer constant YES if the pixel is yellow, NO otherwise.

Input Variables:

• red, green, and blue integer variables describing the RGB color of the pixel.

Possible Return Values:

• YES – the pixel is yellow.

• NO – the pixel is not yellow.

 7

3.1.4 FindWayPoint

Function Prototype:

• int FindWayPoint(int ImageNumber, int CameraNumber, int DisplayPicture, float period,
int DesiredWayPointLocation, int *cx, int *cy, int *cbx, int *cby, int *TotalHits, and int
*MaxBinHits).

Description:

• FindWayPoint determines the location of the endpoint using the CameraNumber camera. It
makes two simultaneous estimations of the position: one using the entire image and one
using 20 × 20 image bins. This routine calls ClassifyPixel to determine the color of each
pixel (red, blue, or neutral). A pixel is considered a candidate pixel if it is part of a red/blue
checkerboard pattern. The routine returns two estimates: one based on the position the
number of candidate points for the entire image and the other based on the higher number
of candidate points for any single bin.

Input Variables:

• ImageNumber – integer variable giving the image number that is used to tag stored images.

• CameraNumber – an integer variable specifying the desired camera.

• DisplayPicture – an integer flag which determines if the system uses xv to show images
while the behavior is running.

• Period – double-length floating point number that sets the image retrieval period.

• DesiredWayPointLocation – desired x location of the endpoint in the image plane. This
variable is passed to the graphics routine, PrintImage (described in the following), to draw
a vertical reference line on the image.

Output Variables:

• cx and cy – location, in the image plane, of the endpoint using the entire image to estimate
location.

• cbx and cbx – location, in the image plane, of the endpoint using the image bin with the
highest number of candidate points to estimate the location.

• TotalHits – total number of candidate points.

• MaxBinHits – largest number of candidate points within a single image bin.

 8

Possible Return Values:

• FoundWayPoint – indicates that there are enough candidate pixels to identify the endpoint
in the image.

• NotEnoughPixels – there are too few candidate pixels to identify the endpoint in the image.

3.1.5 GetWayPointBearing

Function Prototype:

• int GetWayPointBearing(int CameraNumber, double *localbearing, and double *bearing).

Description:

• GetWayPointBearing gives the bearing to the endpoint. The routine uses the compass to
determine the heading of the vehicle. It contains a while-loop structure that uses the
FindWayPoint function to find the endpoint in the camera image and continually adjusts
the camera pan angle until the endpoint is centered in the image. The camera pan angle
and the vehicle heading are added to produce the bearing to endpoint.

Input Variables:

• CameraNumber – integer variable specifying the desired camera.

Output Variables:

• localbearing – double-length floating point number giving the vehicle centric bearing to the
endpoint based on the orientation of the pan tilt unit.

• bearing – double-length floating point number giving the absolute bearing to the endpoint
based on the compass reading and the orientation of the pan tilt unit.

Possible Return Values:

• NotEnoughPixels – the endpoint is not visible in the image.

• FoundWaypoint – the endpoint is visible in image.

3.1.6 FindNearestWall

Function Prototype:

• int FindNearestWall(int ImageNumber, int CameraNumber, int LoX, int HiX, int
WayPointLocation, int DesiredWallLocation, int *cx, int *cy, and double
*PerCentCoverage).

 9

Description:

• FindNearestWall finds the nearest yellow wall in the rectangular region of the image plane
bounded by LoX and HiX. Typically, one boundary is set to the current location of the
endpoint, and the other boundary is set to the appropriate edge of the image plane. The
image plane is divided into thin rectangular cells (5 pixels wide × 40 pixels high). Cells
with more than 40 yellow pixels (using IsPixelYellow to classify the pixels) are considered
part of a wall. FindNearestWall reports the location of the wall cell nearest to the endpoint.

Input Variables:

• ImageNumber – integer variable giving the image number that is used to tag stored images.

• CameraNumber – an integer variable specifying the desired camera.

• LoX, HiX – integer variables specifying the boundaries of the search region in the image
plane.

• WayPointLocation – x-position of the endpoint in the image plane.

• DesiredWallLocation – desired x-position of the wall in the image plane.

Output Variables:

• cx and cy – location in the image plane of the point on the wall closest to the endpoint.

• PerCentCoverage – the percent of the image plane that is classified as yellow.

Possible Return Values:

• NotEnoughPixels – there are not enough yellow pixels in the image to identify a wall.

• EnoughPixels – there are enough yellow pixels in the image to identify a wall.

3.1.7 KeepEyesOnWaypoint

Function Prototype:

• int KeepEyesOnWayPoint(int CameraNumber).

Description:

• KeepEyesOnWayPoint attempts to center the endpoint in the image plane by panning the
camera. The function uses FindWayPoint to determine the location of the endpoint. The
KeepEyesOnWayPoint routine pans the cameras so that the endpoint is driven towards the
center of the image.

Input Variables:

• CameraNumber – integer variable specifying the desired camera.

 10

Possible Return Values:

• NotEnoughPixels – endpoint is not visible in the image.

• FoundWaypoint – endpoint is visible in image.

3.1.8 LookForMovement

Function Prototype

• int LookForMovement(int ImageNumber, int CameraNumber, float *AverageDiff, float
*BinAverageDiff, int *bx, and int *by).

Description:

• LookForMovement looks for evidence of movement in successive images taken from the
same camera. For each pixel in the image plane, the routine computes a “color distance,”

 2
cp

2
cp

2
cpcolor)BB()GG()RR(D −+−+−= , (1)

 where Rc, Gc, and Bc are the colors of the pixel in the current image and Rp, Gp, and Bp are
the colors of the pixel in the previous image. Large Dcolor values can indicate movement
(large values can also indicate shadowing or other changes in lighting). This routine
classifies pixels with large Dcolor as “moving” pixels. These pixels are used to compute the
average Dcolor value and the centroid of the “moving” pixels.

Input Variables:

• ImageNumber – integer variable giving the image number that is used to tag stored images.

• CameraNumber – an integer variable specifying the desired camera.

Output Variables:

• AverageDiff – the average color distance.

• BinAverageDiff – the largest average color difference for a 20 × 20 bin.

• bx, by – the location, in the image plane, of the centroid of changed pixels based on the
entire image.

Possible Return Values:

• total number of pixels that have changed in the image.

3.1.9 FollowMovement

Function Prototype:

• void FollowMovement(int ImageNumber, int CameraNumber).

 11

Description:

• FollowMovement attempts to track movement in the image. The function contains a
while-loop structure that uses LookForMovement to determine centroid of the moving
pixels. For each iteration of the loop, the FollowMovement routine pans the cameras so
that the centroid of moving pixels is driven towards the center of the image. The function
stops when it can no longer detect movement.

Input Variables:

• ImageNumber – integer variable giving the image number that is used to tag stored images.

• CameraNumber – an integer variable specifying the desired camera.

Possible Return Values:

• None.

3.2 Sonar Processing

3.2.1 CheckSonar

Function Prototype:

• int CheckSonar(double *FrontDist,double *LeftDist,double and *RightDist,double
*RearDist,int *BestDirection).

Description:

• CheckSonar grabs the most current set of sonar readings to determine distance to nearby
obstacles. The current set of distance readings are given in inches and are stored in Dist
array. CheckSonar divides the 17 sonar’s into 4 sets, front (sonar’s 6, 7, 8, 9, and 10), rear
(sonar’s 0 and 16), left (sonar’s 1, 2, 3, 4, and 5), and right (sonar’s 11, 12, 13, 14, and 15).
It returns the smallest distance for each of these sets.

Output Variables:

• FrontDist – double-length floating point number giving the closest obstacle distance to the
front of the vehicle.

• RightDist – double-length floating point number giving the closest obstacle distance to the
right side of the vehicle.

• LeftDist – double-length floating point number giving the closest obstacle distance to the
left side of the vehicle.

• RearDist – double-length floating point number giving the closest obstacle distance to the
rear of the vehicle.

 12

• BestDirection – double-length floating point number giving the best direction to move to
avoid nearby obstacles.

Possible Return Values:

• SAFE – there are no objects within 15 in of the robot.

• TooCloseFront – there is an object within 15 in of the front of the robot.

• TooCloseLeft – there is an object within 15 in of the left side of the robot.

• TooCloseRight – there is an object within 15 in of the right side of the robot.

• TooCloseRear – there is an object within 15 in of the rear of the robot.

3.2.2 Process_Sonar

Function Prototype:

• void Process_Sonar (int NumberFront, int *front, int NumberRight, int *right, int
NumberLeft, int *left, int NumberRear, int *rear,int PairedData, int DeadRecon,double
Time, double *DDist, double *Dist_Dot,double *FrontDist, double *LeftDist, double
*RightDist, and double *RearDist).

Description:

• Process_Sonar processes input from the robots sonar sensors. It reports the overall
minimum distance to nearby obstacles as well as a minimum distance for the front, rear,
right, and left set of sensors. The routine maintains an array of the last five sonar samples
which it uses to calculate smoothed sonar readings for each of the four sides.

Input Variables:

• NumberFront, NumberRight. NumberLeft, NumberRear - integer variable specifying the
number of sonars on each side.

• front, right, left, rear – integer array giving the sonar number for each sonar on the given
side.

Output Variables:

• FrontDist – double-length floating point number giving the closest obstacle distance to the
front of the vehicle.

• RightDist – double-length floating point number giving the closest obstacle distance to the
right side of the vehicle.

• LeftDist – double-length floating point number giving the closest obstacle distance to the
left side of the vehicle.

 13

• RearDist – double-length floating point number giving the closest obstacle distance to the
rear of the vehicle.

Possible Return Values:

• None.

3.3 Movement

3.3.1 OrientVehicle

Function Prototype:

• int OrientVehicle(int CameraNumber).

Description:

• OrientVehicle rotates the robot so that it is facing the endpoint. It contains a while-loop
structure that adjusts the angular velocity to drive the endpoint towards the center of the
camera image. The function terminates when the endpoint is centered in the image.

Input Variables:

• CameraNumber – an integer variable designating which camera to use for image
processing. Possible values are 0, indicating the camera on the left, and 1, indicating the
camera on the right.

Possible Return Values:

• 0 – meaningless.

3.3.2 RotateIntoWall

Function Prototype:

• int RotateIntoWall(int WayPointSide).

Description:

• RotateIntoWall rotates the robot so that it is approximately parallel to the wall. The
function contains a while-loop structure that uses CheckSonar to stop the rotation of the
robot. At the same time, the routine tries to maintain visual contact with the endpoint using
the routine KeepEyesOnWayPoint. The direction of rotation depends on the value of
WayPointSide. If WayPointSide is POSITIVE, the rotation is clockwise; if WayPointSide
is NEGATIVE, the rotation is counterclockwise.

 14

Input Variables:

• WayPointSide – an integer variable designating the desired location of the endpoint.
Possible values are POSITIVE, indicating that the robot should keep the endpoint on its
right as it drives, and NEGATIVE indicating that the robot should keep the endpoint on its
left as it drives forward.

Possible Return Values:

• 0 – meaningless.

3.3.3 MoveToWaypoint

Function Prototype:

• int MoveToWaypoint(int WayPointSide).

Description:

• MoveToWaypoint moves the robot to the endpoint and ends the mission. The function
contains a while-loop structure that drives the robot towards the endpoint using
FindWayPoint to adjust the angular velocity and CheckSonar to adjust the forward
velocity.

Input Variables:

• WayPointSide – an integer variable designating the desired location of the endpoint.
Possible values are POSITIVE, indicating that the robot should keep the endpoint on its
right as it drives, and NEGATIVE, indicating that the robot should keep the endpoint on its
left as it drives forward.

Possible Return Values:

• ProblemDetected – move cannot be completed.

• ReachedDestination – move is successfully completed.

3.3.4 MoveToWall

Function Prototype:

• int MoveToWall(int WayPointSide).

Description:

• MoveToWall uses visual and sonar information to move the robot to the nearest wall. A
while-loop structure drives the robot towards the wall by using FindNearestWall to
determine angular velocity adjustments and CheckSonar to determine forward velocity

 15

adjustments. The loop terminates when the robots is approximately 15 in from the wall.
MoveToWall calls RotateIntoWall to reposition the robot so that it is parallel to the wall.

Input Variables:

• WayPointSide – an integer variable designating the desired location of the endpoint.
Possible values are POSITIVE, indicating that the robot should keep the endpoint on its
right as it drives, and NEGATIVE, indicating that the robot should keep the endpoint on its
left as it drives forward.

Possible Return Values

• ProblemDetected – move cannot be completed.

• ReachedDestination – move is successfully completed.

3.3.5 MoveIntoOpen

Function Prototype:

• int MoveIntoOpen(int WayPointSide).

Description:

• MoveIntoTheOpen moves the robot to a position that is at least 30 in from any detected
obstacle. It also orients the robot so that it is facing the waypoint.

• The program contains a while-loop structure that uses CheckSonar to determine its distance
to nearby obstacles. The while-loop also calls KeepEyesOnWayPoint to keep its cameras
facing the waypoint. Once the robot is 30 in from all obstacles, it calls OrientVehicle to
orient its body toward the waypoint.

Input Variables:

• WayPointSide – an integer variable designating the desired location of the endpoint.
Possible values are POSITIVE, indicating that the robot should keep the endpoint on its
right as it drives, and NEGATIVE, indicating that the robot should keep the endpoint on its
left as it drives forward.

Possible Return Values:

• 0 – meaningless.

3.3.6 BoundForward

Function Prototype:

• int BoundForward(int WayPointSide).

 16

Description:

• BoundForward allows a robot to determine and move to its next destination. The function
uses MoveIntoOpen to reposition the robot away from obstacles, such as walls, so that it is
set up for its next move. It calls FindNearestWall to locate its next usable wall, if one
exists. If there is a usable wall, the function calls MoveToWall to control the robots
movement. If there is no wall available, then the robot moves directly to the WayPoint
using the function MoveToWayPoint to control the movement.

Input Variables:

• WayPointSide – an integer variable designating the desired location of the waypoint.
Possible values are POSITIVE, indicating that the robot should keep the endpoint on its
right as it drives, and NEGATIVE, indicating that the robot should keep the endpoint on its
left as it drives forward.

Possible Return Values:

• CompletedMove – move has been successfully completed.

• ProblemDetected – move cannot be completed.

3.4 Communication

3.4.1 PublishMessage

Function Prototype:

• int PublishMessage(int robot,char *msg).

Description:

• PublishMessage sends a message from the robot to the message server.

Input Variables:

• robot – an integer variable designating the robot publishing the message.

• msg – a string variable containing the text of the message.

Possible Return Values:

• 1 – meaningless.

3.4.2 GetMessage

Function Prototype:

• GetMessage(int robot).

 17

Description:

• GetMessage gets a message from the server. It uses the variable, robot to determine which
message to retrieve.

Input Variables:

• robot – an integer variable designating the robot that published the message.

Possible Return Values:

• BEARING – message contains bearing information.

• MOVING – message indicates the robot is in the MOVE state.

• WATCHING – message indicates the robot is in the WATCH state.

• STOPPED – the robot has terminated the mission.

• DANGER – the robot has detected movement.

• READY – the robot is ready to perform the mission.

3.4.3 ParseMessage

Function Prototype:

• int ParseMessage(char *msg).

Description:

• ParseMessage separates an incoming message into a series of words that can be interpreted
by other functions in the program. It returns an integer constant, describing the type of
message. This type is determined from the first word of the message.

Input Variables:

• msg – a string variable containing the original message from the server.

Possible Return Values:

• BEARING – message contains bearing information.

• MOVING – message indicates the robot is in the MOVE state.

• WATCHING – message indicates the robot is in the WATCH state.

• STOPPED – the robot has terminated the mission.

• DANGER – the robot has detected movement.

• READY – the robot is ready to perform the mission.

 18

3.5 Miscellaneous

3.5.1 StartServers

Function Prototype:

• int StartServers(int argc, char *argv[]).

Description:

• StartServers links local variables to the servers necessary to run the behavior. There are
seven servers used on the robot. The DriveCommand server sends commands to the
driving system. The Odometery server provides position information. The Sonar server
provides data from the sonar array. Two Camera servers provide images from the cameras.
The Pan-Tilt server allows control of the camera gaze. The Compass server provides
compass information.

• The two remaining servers, the Information server and the Map server are hosted by other
computer systems on the local area network used by the robots. The Information servers
allow messages to be passed between the robots. The Map server maintains a shared
obstacle map used for debugging purposes.

Input Variables:

• argv – a string array containing the command line arguments.

• argc – the number of command line arguments.

Possible Return Values:

• None.

3.5.2 PrintImage

Function Prototype:

• void PrintImage(int ImageNumber, int CameraNumber, int cx, int cy, int cbx, int cby, int
DesiredLocation).

Description:

• PrintImage writes an annotated image to an ascii portable pixmap file. In addition to the
camera image, the saved image has a 20 × 20 grid, shown in white. Two pixels, one at (cx
and cy) and the other at (cbx and cby) are highlighted in cyan and yellow, respectively.
There is a vertical magenta line at DesiredLocation for reference. Images are tagged with
the robot number, Camera number, and an Image number so that they can be easily
organized for post-processing.

 19

Input Variables:

• ImageNumber – integer variable giving the image number that is used to tag stored images.

• CameraNumber – an integer variable specifying the desired camera.

• cx and cy – image pixel to be highlighted in cyan.

• cbx and cby – image pixel to be highlighted in yellow.

• DesiredLocation – location in the image plane of a aertical reference line to be drawn in
magenta.

Possible Return Values:

• None.

3.5.3 PrintYellowImage

Function Prototype:

• void PrintYellowImage(int ImageNumber, int CameraNumber, int WallLocation, int
DesiredWallLocation, and int LoX, int HiX).

Description:

• PrintYellowImage writes the current processed image for the CameraNumber to an ascii
portable pixmap file. The image shows yellow wall pixels, neutral pixels, and a grid. The
image also shows vertical reference lines at WallLocation and DesiredWallLocation.
Images are tagged with the robot number, Camera number, and an Image number so that
they can be easily organized for post-processing.

Input Variables:

• ImageNumber – integer variable giving the image number that is used to tag stored images.

• CameraNumber – an integer variable specifying the desired camera.

• WallLocation – integer variable giving location of the vertical wall edge closest to the
endpoint.

• DesiredWalLocation – integer variable giving desired location of the wall in the image
plane.

• LoX,HiX – integer variables specifying the boundaries of the search region in the image
plane. Typically, one boundary is set to the current location of the endpoint, and the other
boundary is set to the appropriate edge of the image plane.

 20

Possible Return Values:

• None.

4. Conclusions

This report has presented a guide to the software developed for the BoundingMovement behavior
implemented on iRobots’ ATRV-Jr platforms. It presents a short description of the behavior
algorithm and a detailed description of the servers and functions used to implement the
algorithm.

In future work, we can use this behavior to study aspects of the bounding overwatch behavior.
One aspect we intend to explore is the response to danger. In the current system, the robots
respond to danger by increasing speed to get to the next concealed spot quickly. Other behaviors
we intend to explore are the use of other assets such as small (<5 lb) robotic assets and aerial
robotic platforms that can be used to monitor or destroy the danger. Another aspect we want to
explore is the effect of communication delays on system performance. The experimental area is
too small to actually affect communications but messages can be delayed to simulate
communication delays.

In future work, we will also incorporate more realistic sensor algorithms. In particular, we plan
to use more realistic hiding locations in the future. We will modify the FindWall routine so that
it uses vertical edges, shape, and color information to identify possible hiding locations.

Right now the robots do very little planning to determine their next course of action. By
incorporating a world map, from the Map server, the robots could plan their moves more
effectively. We will also address this issue in our future research.

 21

Appendix. Defined Constants for the BoundingMovement Code

 22

Table A-1. List of the defined constants used in the BoundingMovement software.

Constant Name Value Meaning
YES 1 Successful completion of function.
NO 0 Unsuccessful completion of function.
ProblemDetected 102 Servers did not activate properly.
NotEnoughPixels 103 Image does not contain enough candidate pixels for the analysis.
EnoughPixels 104 Image contains enough candidate pixels for the analysis.
FoundWayPoint 105 Image contains enough candidate pixels to find the endpoint.
ReachedDestination 106 Robot has reached the next wall or endpoint.
StartingMove 107 Robot has begun its move.
StillMoving 108 Robot has nonzero velocity.
SafeDistance 15.0 Maximum safe distance from obstacles in inches.
SAFE 300 Robot is not too close to an obstacle.
TooCloseFront 301 Obstacle near the front of the robot.
TooCloseRear 302 Obstacle near the rear of the robot.
TooCloseLeft 303 Obstacle near the right of the robot.
TooCloseRight 304 Obstacle near the left of the robot.
NormalForwardSpeed 0.3 Normal driving speed in meters per second.
CompletedMove 501 Robot has successfully completed its move.
SomethingInTheWay 502 Robot cannot complete its move because there is an obstacle near the robot.
POSITIVE 1 Endpoint is on the left of the robot.
NEGATIVE –1 Endpoint is on the right of the robot.
BEARING 1001 Robot sent a Bearing message.
MOVING 1002 Robot sent a Moving message.
STOPPED 1003 Robot sent a Stopped message.
WATCHING 1004 Robot sent a Watching message.
DANGER 1004 Robot sent a Danger message.
READY 1006 Robot sent a Ready message.
UNKNOWN 2000 Robot sent an indecipherable message.
RED 200 Color is red.
BLUE 201 Color is blue.
YELLOW 202 Color is Yellow.
NEUTRAL 203 Color is not blue or red.
Odometry 167 Robot is wheel encoder readings to the map server.
GPS 267 Robot is sending global positioning system readings to the map server.
INU 367 Robot is sending inertial navigation unit readings to the map server.
Compass 467 Robot is sending compass readings to the map server.

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 23

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 Only) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FT BELVOIR VA 22060-6218

 1 COMMANDING GENERAL
 US ARMY MATERIEL CMD
 AMCRDA TF
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS R
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF
COPIES ORGANIZATION

 24

 1 UNIVERSITY OF NE
 ENGINEERING CTR
 N118 WALTER SCOTT

S FARRITOR
 LINCOLN NE 68588-0656

 1 UNIVERSITY OF SOUTH FL
 COMPUTER SCIENCE AND
 ENGINEERING
 R MURPHY
 4202 EAST FOWLER AVE
 ENB342
 TAMPA FL 33620-5399

 1 US MILITARY ACADEMY
 D EECS
 A SAYLES
 WEST POINT NY 10996

 1 APPLIED PHYSICS LAB
 T NEIGHOFF
 11100 JOHNS HOPKINS RD
 LAUREL MD 20723-6099

ABERDEEN PROVING GROUND

 24 DIR USARL
 AMSRD ARL WM BF
 M BARONOSKI
 R DEPONTBRIAND
 H EDGE
 M FIELDS (15 CPS)
 G HAAS
 T HAUG
 T KELLEY
 W OBERLE
 R VON WAHLDE
 S YOUNG

